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Mathematics 

With big data… 

comes big challenges… 

…and you need good mathematics 



Big data: challenges 

• Central processing infeasible 

• Central storage infeasible 

• Streaming data: real-time learning 

• Streaming: no revisiting of past entries 

• Need to revisit old tools from signal 
processing and statistical learning 



Big data: challenges, tasks, and optimization 
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Example 

Here is your data:  
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with N or T  huuuuuuuuuuuge. 

(Ex.: traffic data, N traffic links, T time slots.)  
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Example 

We want to decompose Y into  

“background data” / trend 

with L low rank matrix   

“patterns/clusters/outliers”   

with S sparse 

& modelling/measurement errors  



Solve 

 

with some “dictionary matrix” D. 

But not all entries of Y are important, so use a 
projection operator and solve 

 

 

But how do we model L low rank and S sparse? 
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Write the task as an optimisation problem: 

 

 

Weight λ controls rank penalty. 

Weight ω controls sparsity penalty. 
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Consider 

 

 

Weight λ controls rank penalty. 

Weight ω controls sparsity penalty. 

One rich, versatile model that 
explains data parsimoniously and 
succinctly. 
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This approach subsumes 

• Principle component analysis, robust PCA 

• Dictionary learning 

• Compressed sampling, compressed sensing 

• Subspace clustering 

• Nonnegative matrix factorization 

• Missing value imputation 

• Regression 

• Kernel-based learning 

• Dimensionality reduction 
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One mathematical model to rule them all  

a lot of other approaches 



 

• ADMM: alternating direction method of multipliers 

• DR: Douglas-Rachford algorithm 

• BCDM: block-coordinate descent methods 

• K-SVD 

• Mardani-Mateos-Giannakis 

• Iterative subgradient 
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Algorithms 
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Algorithms 

Decentralized 

Parallelizable 

Robust 

Online 

Scalable 

Convergence guarantee: we know they always work! 



Applications 
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Imputation of MRI data 

Dynamic network visualization 

Traffic: outlier detection & analysis 



Conclusions 

22 Mathematics: we are here to help. 


